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The classical limit of so(3) compact quantum systems 

R J B Fawcett 
School of Mathematics, Queensland Univemity of ltchnology, Gardens Point Campus, 
GPO Bax 2434, Brisbane, QLD, 4w1, Australia 

Received 2 August 1991, in final form 18 November 1991 

Abstract. In a recent paper bj Fawcett and Bracken, the dassical limit of ordinary non- 
wmpact quantum systems is considered in Iems of the mntraction of the underlying 
kinematical tie algebra (lhe Wey-Heisenterg algebra) and its representations Io the 
Abelian lie algebra of the Same dimension and its representations. In this paper, fame 
of those ideas M adapted to discuss in similar terms, the classical limit of w m p a a  
quantum systems whme underlying kinematical algebras are of the Special orthogonal 
Ipe. ?he dassical dynamical system that muIIs from the dassical limit of a mmpaa 
quantum mechanical system will te called a ‘compact classical system’. Poisson brackets 
for such ‘wmpact dassical systems’ have already been given in the literature (Gmssmann 
and Peres), and the recovery of the Poisson bracket for sop) mmpact classical sytems 
is demonstrated in terms of the mntraaion Limit. 

1. Introduction 

In a recent paper [l], the classical limit of quantum mechanics was considered in terms 
of the contraction of the underlying kinematical algebra, the non-compact Weyl- 
Heisenberg Lie algebra w, (and its representations) to the non-compact Abelian Lie 
algebra t,,+, of the same dimension (and its representations). ’lb accommodate this 
purpose, a new definition of the contraction of a Lie algebra and its matrix repre- 
sentations by the method of sequences of representations wds presented. A detailed 
formulation with examples of the n = 1 case was given, although an important step 
involving the interchanging of two limiting processes remains to be proved. The for- 
mulation of the n > 1 cases k a straightfaward generalization, but similar obstacles 
as yet stand in the way of a complete proof. 

In this paper, the discussion is extended to the idea of the classical limit of a 
compact quantum system. A compact quantum system k a quantum mechanical 
system whose underlying kinematical algebra is a compact Lie algebra. The idea of 
a compact quantum system based on the representation theory of so(n  + 2)  arose 
from work by Barut, Bracken and Thacker 12-51, These ideas were extended to a 
general formalism of compact quantum systems based on the special orthogonal and 
unitary algebras [6] and the compact symplectic algebras [7]. It is that formalism for 
the compact quantum systems based on m(3) which is used here. 

The notion of a ‘compact classical system’, a classical dynamical system obtained 
as the classical limit of. a compact quantum system, is not entirely new. Grossmann 
and Peres [SI postulated a Poisson bracket obtained from compact Lie algebras, as an 
analogue to the way the ordinary Poisson bracket of classical Hamiltonian mechanics 
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1686 R J B Fawcert 

is obtained in the classical limit from the commutator of quantum mechanics. The 
compact Fuisson bracket of Grossmann and Peres [SI will be derived later in the case 
of so(3) compact quantum systems. 

A detailed discussion of the properties of so(n) compact classical systems will 
not be presented here. Some of the essential features of such systems hzve been 
considered elsewhere [9], however the important points will be mentioned. ks the 
formulation of the classical limit of an so(3) compact quantum system is in many ways 
similar to that of a w ,  non-compact quantum system [l], the discussion in places will 
be somewhat abbreviated. 

Throughout this paper, t ,  is used to denote the Abelian Lie algebra with n 
generators. 

2. Contraction of representations of so@) to representations of t3 

Let a ,  a be a pair of boson creation and annihilation operators on a Hilbert space H 
which contains vectors E, = l / f i  for T = 0, 1, . . ., such that 0 

a t o  = 0 a t ,  = fit,-, at ,  = &TitT+,. (1) 

Let N = iia be the number operator. 

relations 
The Lie algebra so(3) has three generators X,, X,, X,, which satisfy the bracket 

T n  mmr-r+ n..nn+..m mnr ln4-  rL1 tha ~~IPIIII~II Y Y "-0 s . -s~Aa+aA 4 t h  m- 
'1. CV.,.p.,, y""'L"." . I I~L,,P'"W L",, u,- p , , c , L L " ' "  A,, A 2  0,- ,auu"s,I~LI" ",U, -111- 

pact position and momentum operators, respectively, and h is the modified Planck's 
constant. In this paper, the boson realization [6,10] 

on the span of the <, will be used, where X and n are k e d  length and momentum 
scales respectively satisfying An = f i  and 1 is the identity operator. This realization 
is conventionally labelled ( 1 ) .  In the cases where 21 is a non-negative integer, the 
action of the pnerators 0;; Pi; J i  leaves the finite-dimensional subspace 

Sf =sPan{E,,E,,...,E,,l (4) 

invariant. Cases where 21 is not a non-negative integer will not be further considered 
in this paper. If it is assumed that the vectors E ,  are orthonormal with respect to 
some inner product ( . , . ) on H, the so(3) boson realization (3) will not be Hermitian 
with respect to ( . , . ), Therefore, introduce rescaled Vectors 
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and a new inner product ( . , . ), with respect to which the E,,v are orthonormal. The 
operators a and a(2lU- N) are now Hermitian conjugate pairs with respect to ( ’ ,  .), 
and SI is the span of the E,,,. Using these new vectors (S), matrix elements for the 
generators can be determined from (3) by the equations 

Q{Ef,v = (X/2&)[4701 + 1 - r ) E l , 7 - l  + dCr+ 1 P -  7-)h ,7+11 

et:,, = (-in/2&)!\/r<~ + 1 - r)c,,F-i - 

Jltf,7 = -(1/O(v - o E l , v  

+ 11~21-  r)<l,;.+:! 

(6) 

for r = 0,1, .  . . ,2l. The matrices Q,, P,, J ,  satisfy the commutation relations 

(7) 
-iX in 

[Q:,P,I = ifiJ, IQOJII  = K P I  [P,,J,I = T ~ ; Q I  

and the Casimir relationship satisfied by them is 

(QIZ/X2 + P , 2 / ~ z ) / l  + J 1 2  = (1 + l / l)n.  (8) 

The Lie algebra so(3) is contracted to 1, by setting X; = €XI, X; = cX2, 
X ;  = ex,, where t is the contraction parameter. The bracket relations satisfied by 
the contracting ~~ generators are then 

(9) 
- i d  icn [X;,X;] = i&Xj [X;,Xj] = In x; [x;,xj] = Ixx;  

and these all formally vanish in the contraction limit, so that the bracket relations 
reduce to those defining t,, that is [Y,,?] = 0 for i , j  = 1,2,3,  where the Y ,  
denote the generators of the contracted algebra. 

Theorem. Choose a dimensionless mnstant { such that 0 < C < 21. Then there b 
a sequence of (2ml + 1)dimensional matrix representations {T(,,,),}:=~ of so(3) 
labelled (ml) in the usual way, acting on ( 2 m l +  1)dimensional subspaces S(,,,,, of 
Hilbert spaces ‘H(, , , l l ,  whose contraction limit is a representation r ,,,), of 1, acting 
on a subspace S,,,! of X(,),. This representation is equivalent to a dlrect integral 
of ineducible one-d~mensiona! Hermitian representations with 

( .  
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Roof. Let [an denote the integer part of the real number a and set M(m,f = [mcn. 
Consider a sequence. of (2ml+l)dimensional representations T(,,,)~ of so(3), labelled 
by m = 1 , 2 , .  . ., where for each m, 

T( , )~(X, )  = Qf = (X/Zv'i)(a + ii(Zmli7- N ) ]  

r(mjf(Xz) = pI = ( - i n / M ) [ a  - a ( ~ m l ~ -  N ) ]  

7r(,)I(X3) = J f  = - ( l / l ) (N  - mln) (13) 

Q,, Pf ,  Jf still obeying (7), with matrix elements on the basis vectors 
E,I,l,"'. Eml.2 , f }  being given by 

PILd,, = (-inPv'iN\/T(2ml+ 1 - T)cmf,v-*  - d(T+ 1)(2ml- T ) L f , T + l l  

Jltmf,r = - ( l / l ) ( T  - m w n f , r  

Qrtmf,T = ( X / 2 d ) [ d ~ ( 2 m l +  1 - T)Emr,?-* + d(~+ 1)(2mi - ~)C,r,,.+11 

(14) 

for T = 0 , 1 , .  . . ,2ml.  However, for the purposes of the contraction process, 
will be given on S(m)f in terms of a re-ordered basis 

{+(m)Tl+(,)r = Sml,r+M(,)x>T= --M(,)f,."32ml --M(,,ll. (15) 

For each m > 1, the contraction parameter c, is taken to have the value I /m ,  
and set 

Q(,)r = c m Q i  = *(,)I (x;) = %%T(,),(Xl) 

q,), = %Pf = T(,)f(X;) = cmT(,)f(X2) 

J+) ,  = EmJf = T(,)f(Xi) = .,"(,)f(X3). (16) 

On the vectors 
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for all integers T such that -M(m,, < r < 2mI - M(,,,,,. In the contraction limit, 

Q(m)~+(m)r  = ( X / ~ ) ~ ? F ? T T [ + ( , ) , - I  + d ~ ( ~ ) ~ + i I  

J(m)l+(m)? = ( 1  - C / w ( m ) v  (19) 
for all integers T. Minor adjustments, here and kter, have to he made in the cases 
C = 0 where T 2 0 in (19), and C = 21 where T < 0 in (19). It k easily checked that 

and 
[ Q ( m ) ~ , p ( m ) ~ I + ( m ) v  = [Q(m)rV J(m)~l+(m)v = [P(m)r, J(m)~l+(m)r  = 0 (20) 

(21) 2 
[ ( Q ( m ) r 2 / X 2  + P(,)i2/n2)/1 + J(my l+(m)r = +(,p 

E - .  ... I-_ .-... ._. .L~~. ,..\ L.... c.- _I. _.__ .e , --.-:..-A LA-,. iur a11 mregers r, anu m u  (11) nuius iur m e  reprcwnutiun UI r3  UVL~LIIIGU IICIC. 

integral of onedimensional Hermitian representations. 

which the +(m)v are orthonormal for all integers T ,  S(m,l the linear span of the 
and let E ( m ) r  be the identity operator on 'H(m)l. Also introduce the dual space 

vectors of the form c & ( ~ ) ? ,  where the cy are arbitrary complex numbers. The 

commuting operators Q(=),, P(w,r J(=), have common generalized eigenvectors in 
7(,,,),, They have the form 

It can be seen as follows that the representation of 1, obtained here is a direct 

Let ( . , . ) ( m ) ,  be the inner product of the Hilbert space %(,), with respect to 

Gf S(=),, Kh0s.C e!ementr (!kear h.scticsr!s on s(w)t: rre rS~cir te4 wi:!! a!! fer!%! 
m 

7z-m 

(22) 

This completes the proof of the theorem. 0 
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The reducible (direct integral) representation of t ,  obtained here in the contraction 
limit is effectively parameterized by the real number C. Direct sum combinations of 
representations of this type can be found [7] dong the lines of the method used for 
the analogous non-compact result [l]. As in that case, it appears that the maximum 
extent of the direct sum combination here is a countably infinite direct sum over c 
values together with a direct integral over 0 values. 

3. The classical limit d an so(3) "pact quantum system with a single degree of 
freedom 

Consider now a compact quantum system with a single degree of freedom, kinematical 
algebra so(3), and a time-independent Hamiltonian operator XI. The representation 
of so(3) is spanned by operators Q I ,  P,, J ,  as in (3), acting on S,. 

Suppose H, can be written as a polynomial in Q,,  Pi and J ,  of the form 

H , ( Q , , P , , J , )  = C amlm2m36 ~(Q,"'P,"''Jim3 + .  . . + J,msP,m2QlmL)  
mllmalms 

(27) 
where the amlmlma are real constants of the appropriate dimensions, and all six 
permutations of the Q I ,  PI and J, are included. The sum in (27) and following 
equations is to be taken over non-negative integers mlrmz,m3 such that ml + 
mz + m3 < N for some tixed positive integer N .  In this form, the Hamiltonian 
operator is Hermitian with respect to ( . , . ), and due to the finite dimension of S,, 
H, is self-adjoint with respect to ( . , . ), on S,. 

The time dependence of the quantum operators in the Heisenberg picture is taken 
to be given [7l by the operator differential equations 
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where all the permutations of Qf"'Pf"'Jfms are duly included. Formal solutions to 
these equations have the form 

Q d t )  = u i ( t ) t Q i ( o ) u d t )  P f ( t )  = Ui(t)tPt(0)udt) 

J d t )  = udt)tJi(0)ukt) U I ( ~ )  = e x p [ H t ( Q d O ) ,  4(0),JdO))t/ihl (29) 

where U l ( t )  is the unitary evolution operator. 

tion 
The corresponding compact classical Hamiltonian system has a Hamiltonian func- 

H ( ~ , P , u )  = a m , m l m a q m ' P m = u m ~  (30) 
ml,ms,ma 

where q,  p ,  U are the compact classical variables corresponding to Q ,  P, J respec- 
tively, and dynamical equations 

1 a H  a H  q=- -  - + U -  
i n 2 p a u  a p  

. 1 a~ a H  
1 x 2  au aq p = -4- - u- 

These equations are obtained by analogy from the expansions of the commutators in 
(28), and the implicit presence of tr in these equations is unavoidable. The variable 
U has been used here in preference to j because j, like 1, is commonly used as a 
label for so(3) representations. There is no compact classical variable corresponding 
to the evolution operator U f ( t ) .  There are immediately two constants of the motion 
obtainable from (31). The hrst is the compact energy integral I, = H ( q , p , u ) .  The 
second is 

I2 = (q2 /X2  + p2 / .2 ) /1+  U 2  (32) 

which from (11) will be taken to have the value of unity. The equation (32) constrains 
the compact classical motion to a (closed and bounded) ellipsoid of revolution in the 

features of such systems [9]. 
phase space d :x* w;iab!es q, p ,  G, ail6 Ck c=:,:raint !ea68 tc XXEe heiestiiig 

Let (q, ,p, ,u, ,)  be an initial condition for a compact classical trajec- 
tory ( q ( t ) , p ( t ) , u ( t ) )  of (31) and set 4, = x d m c o s e ,  P, - - 
n J m s i n  e, U ,  = ( 1  - C / O  for C(2 - C / O  = [ ( q o / X ) 2  + ( ~ o / n ) ~ I  2 0, 
0 Q C Q 21, 0 6 0 < Z X ,  lu0l 6 1 and 21 a positive integer. Here, X,n are the 
scales introduced in the previous section. Note that the scale of Iqopol can be made 
macroscopic, or large compared with h, by choosing C and 1 sufficiently large. 

Consider now the contraction of so(3) to t ,  given in the previous section, where 
the number states [, are eigenvectors of a ( O ) a ( o ) ,  and a ( 0 )  and a ( 0 )  are related 
to Q f ( o ) ,  Pf(0 )  and J f ( 0 )  as in (13). Again s t  Q(,) t  = %,QI, = €,PI,  
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J f  = ~,.l,, and 
men from (19 ,  

J(m,f have the representation at time t = 0. 

in the sense described in (24). 

taken to be determined by the operator differential equations 
The time evolution of the contracting operators Q(,),(t), P(m),(t) ,  J ( m ) l ( t )  is 
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The expansions of (36), not included here, for the form of the Hamiltonian (39, are 
similar to those of (B), from which (31) was deduced. Formal solutions of (36) in 
terms of a unitary evolution operator U(, , , ) f ( t )  can be given in the form 

The power of e,,, appearing in (36) and (38) is determined by the consideration 
that (36) should in general not diverge or vanish as e,,, + 0. This power of E, is 

with respect to 

-M(,,,), < T 6 2ml - M(, ) I  
denote its dual space which is associated with all formal vectors of the 

Zmt-M(,),  

r=-M ( " 9 8  

not the Same as the p w e r  appearing in the noncompact case [ l j ~  
Let ( . , .)(,,,), be an inner product on the Hilbert space 

Let S(,,,), denote the span of the vectors 
which the +(,,,,,, are orthonormal for integers T,  -M(,,,)f < T < 2ml - M(,,,)r. 

and let 
form 

c c?+(+ 

where the e ,  are complex numbers. Let I(,,,)t denote the identity operator on 'Hi(,,,)l 
and set 

From the definitions (39) and (22) of @ ( , , , ) l ( ( , O )  and @ ( m ) f ( < , O )  respectively, 
and the definition of the contraction of a sequence of representations, it follows that 

m-m lim Q(,,,)f(O)@(,,,)f(<, 0) = Q(,)dO)@(,p(C,@ = %@'(,)t(C,O) (40) 

with corresponding equations for the P and J operators. This result extends to any 
finite polynomial A(Q(mlf(0) ,  P(,)f(0),J(m)f(O)). The vectors 

d f n .  . . ( n ~  p . I ~ I  I .  . . ( n ~ m .  . . [r  m 
, L I ' c ( ~ J I \ ~ / ,  (,,,)I\-/, " ( m y \ - / ,  =(my\ \ , " /  (4:) m (t a\  

- ( " , ) f \ > , " /  

are associated with elements of while the vectors 

o,,,,(c,@) A ( Q ( ~ ) O L  ~ ~ m ~ f ~ ~ ~ ~ ~ ~ ~ ~ i ~ ~ ~ ~ ~ ~ m ~ f ~ c , ~ ~  (42) 

are associated with elements of 7(m,f. 
The next step needed in the argument is to show that (40) can be extended to 

times 1 > 0. This is difficult to establish for general polynomial Hamiltonians, how- 
ever it should be emphasized that it is a quite straightfonvard matter to establish the 
result when the operators Q(m)t(t), P(,,,)f(t), J ( , ) f ( t )  are polynomial in Q(,,,lf(o), 
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f'(,,,)dOh J(. , ,)I(O) and anab'tic in t .  Let Q(,,,)dt), P(,,,)!(t), J(m)i(t) be the solu- 
tion of the operator differential equations (36) with the lnitial condition Q(m)l(0), 
P(,,,)l(O), J(,,,)i(0) as given in (33). Due to the finite dimension of the space S(,,,,l, 
these solutions are known to exist and to  be analytic in t for all 1, from (38). For 
T , S .  -M(,,,)l < T ,  s < 2nd - 1!4(,,,)~, let 

lQ(m)~(')lvs = (+(m)vT Q(m)~(')dJ(m)a)(m)~ (43) 

denote the matrix elements of Q(,,,li(i) in the 
[p(,,,)d~)lPs7 [J(,,,)i(t)I,.*. Define Q(m)dt) in terms of the limits 

basis, and similarly define 

[Q(m)~(t)lvs = Q(ce)1(t)+(m)a)(m)l 
= 77%-m lim (+(m)v,  Q(m),(t)dJ(m)s)(m)i 

= m-m lim [Q(m),(t)lv8 (44) 

with corresponding equations for [P(m) , ( t ) ]vs ,  [J(m)!(t)Jp3, meaning pointwise con- 
vergence in t for all integers T ,  s. In these terms, the limit as m + 00 of the evolution 
operator U(,, ,) l( t)  does not exist. 

I L  w Wli,;l.;.L".Cu U I a L  UlL CULLIILCU"..  L I C L l l L L l l  YlL y ' L L L L U . 1 L  cl,." CIOI.,.C.a. Y,L,O,,L.W 

is then established through the extension of (40) to times 1 > 0, so that 

(45) 

T. :- - :nn+. .mA +hnt thn m--arr:n- h n k x m n -  thn n..*n+..m qnrl . 4 ~ c c h ~ l  

m-m lim Q(m)t(t)@(m),(C, 0 )  = Q(my(t)@(m)~(C, 0) = dt)@(m)l(C,@) 

with corresponding limits for the P, J operators, where ( q ( t ) , p ( t ) , u ( t ) )  is the 
solution of (31) having the initial condition ( q o , p , , u , ) .  Then the generalized one- 
dimensional subspace spanned by @(m),(C,O) will be invariant under the action of 
Q(m)l( t ) ,  P ( m ) l ( t )  and J ( m ) l ( t )  in the contraction limit, and will he an eigenspace 
of those operators, corresponding to eigenvalues on a compact classical tiajectoly. 

Key steps in this argument that have yet to be established for general Hamiltonians 
involve showing that the limits (44) exist and that the results (45) follow. In essence 
though; this again amounts to demonstrating the interchangeability of two limiting 
processes. 

Rather than exploring these difficult problems for general Hamiltonians at this 
stage [7], simple systems for which the idea can be pushed through completely are 
considered as support for the conjecture. 

3.1. Svstems with simple @namics 

As noted earlier, it is easy to establish the desired result (45) for Hamiltonians (27) 
which lead to the dynamics being polynomial in Q ,),(O), P(,,,),(O), J( , , , ) , (O)  and 
analytic in 1. For example, mnsider the compact ~013) oscillator with Hamiltonian 

H,(Q,,P,,J,) = ~ ~ ~ / ( 2 1 ! 4 )  + ; M ~ ~ Q , ~  (46) 

where M is the mass of the oscillator, w is the angular frequency of oscillation, and 
the length and momentum scales A, n satisfy 

A = +  n = m .  (47) 
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A case where the length and momentum scales chosen differ from (47) will be con- 
sidered in section 3.2. The analogous compact classical Hamiltonian function k 

H ( q , p , u )  = P2/(2M) + fMw2q2 

q = p u / M  P = - M w Z u q  U G O  (49) 

(48) 

and the compact classical dynamical equations are, from (40) 

with general solutions of the form 

where (qo,po,uo)  = ( q ( O ) , p ( O ) , u ( O ) )  is the initial condition of the compact clas- 
sical trajectory, and 

[ q o 2 / X Z  + PO2/K21/1 + uoz = 1 .  

H(m)r(Q(m)i, ' ( , ) I )  = P(m)r I'M + iMw2Q(m)12 

(51) 

For each m, 

2 

= h ( P ( m ) , Z / 2 ~ 2  -I- Q(,)r2/2X2). (52) 

Consequently, 

Q(,)r = (l /W(P(m)iJ(m)~ - ( k M w / W Q ( , , , ) i )  

P(m)r  = -MJ(Q(,)iJ(,), + ( icm/21Mw)qm),)  

J p n ) l  E 0 (53) 

where E, is the contraction parameter. The equation j(?), = 0 stems from (47) 
and this also results in the Hamiltonian operator H(,,,), being diagonal on the basis 
vectors @(,,,)?. Solutions of (53) can be found in the form 
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with 

Thus 

and clearly 

Q ( m ) ~ ( t ) Q ( m ) d C t  '4 = d t P ( m y ( C , O )  (59) 

with corresponding equations for P(,) , ( t )  and J( - ) , ( t ) .  While exp((+iwJ(,),(O) - 
ie,,,wI(,,,),/2l)t] is not an element of the enveloping algebra of Q(m),(0), P(,,,),(O), 
J(, , , )f(0),  its behaviour in the contraction limit can nonetheless be determined. 

Another simple example where the idea can be pushed through completely has 
the Hamiltonian 

Q(,,,)dt) = Q ( m ) d O )  coswt  - (x/K)P(,,,)dO)sinwt 

p(,)~(t) = p(m),(0) C O S W ~  + (./A)Q(,y(O) C O S W ~  

J(,,,),(t) +n),(O) (61) 

where w = 1 / 1 A ~ .  

3.2. A numerical erample 

The presence of the Dirac delta function in (25) is not helpful in terms of nu- 
merical treatment of the contraction process. Therefore, an alternative strategy is 
employed. This involves normalized truncations of the vectors Qlm),(C, 0) which 
weakly converge to the zero vector of 'H(,), in the contraction limit. The sequence 
of normalized vectors is constructed as follows. Set IW;,,,)~ = [cm.] < M(,,,,, in the 
case 0 < C 6 1; and M;,,,,, = [ ( 2 1 -  C ) m T n  6 M(,,,), in the case 1 < C < 21, where 
in both cases 0 < y < 1. Define 

- ine constant y is a aimensioniess parameter introduced into the construction oi 
+(,,,lf(C, 0) to obtain (63) and (64). Because 
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it can be proved inductively that 

m-m lim (4(m)dC, 01, A(Q(m)f (O)>  p(m),(O),  ~ ( m ~ l ( 0 ) ) 4 ( m ) f ( C , e ) ) ( m ) l  

= A(qo,po,uo) (64) 

for any polynomial A ( Q , P ,  J), and so it is conjectured that (64) holds for times 
t > 0 and that the spread of the wavepacket will vanish as m -+ m. ’Ihi conjecture 
has been investigated numerically for a system whose compact classical behaviour k 
nonlinear but integrable. Consider the Hamiltonian operator 

Hi(Q1, JO = f(Pr2/M + 2Mw2Qi2)  (65) 

with A, n again satisfying (47). The corresponding compact classical system has 
Hamiltonian 

H ( q , p , u )  = + ( p 2 / M  + 2 M w 2 q 2 )  (66) 

with dynamical equations 

x r; - = ( 1  \-, Im>n,r “ ” l r -  r -  ri = -(2T”u2Lu I Y  ,’I - -  - ( , . , / f k L n  -, b,.,YI,. (67) 

This system has ascillatoly solutions [7, 91 given in terms of the Jacobi elliptic func- 
tions sn(.), cn( . ) ,  dn( . )  [ll], where the frequency of oscillation and the form of the 
solutions is amplitude-dependent. 

For each m, define 

2 ff(m)l(Q(m)l, p(m),? J(m)l) = hw(P(m), / 2 ~ ’  + 2Q(m)12/2X2) (68) 

and mnsequently, !(m)f is now not diagonal on the basis vectors “(-,.. 
The initial conditions for the compact classical trajectory chosen for the numerical 

study are ( q o / X , p o / n )  = (0.5,O.O) for the position and momentum with uo being 
the positive value determined from (51). In each figure, non-dimensional time w t  is 
pioiied aiong the horizonhi axis and non-dimensionai position q i A  is piottea aiong 
the vertical axis. The line q = 0 is shown. The other three lines show, for various 
values of m, the non-dimensional expectation value (1 /X)(Q(m)l(t)) and its non- 
dimensional spread ( l /X)(  ( Q ( m ) , ( t ) ) ~ u ~ , ~ ~ , ( ~ ) ) .  The fourth line shows the periodic 
(non-sinusoidal) compact classical trajectoly with the initial conditions given earlier. 
For the purposes of these computations, Mim,, was taken to be min(  [J;;tll, M(,,,),); 
that is -y = 0.5,  the deletion of C from the definition of Mi,),  not changing the 
essential idea. Also, 1 = 1 was chosen, giving C % 0.133 97 and 0 = 0. The operator 
Q(, , , ( t )  was computed numerically Over a range of t values by diagonalizing the 
evolution operator U(,,,),(t) and using (38). 

Figure 1 shows the non-dimensional position expectation value and spread for the 
compact oscillator with m = 49.5, = 6 ,  M ( m ) f  = 6 and the dimension of the 
representation being 2mI + 1 = 100. 

Figure 2 shows the non-dimensional position expectation value and spread for 
m = 299.5, Mimlf = 17, M(,,,), = 40 and the dimension of the representation 
being 600. 
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F@m 1. Spread of the sop) quantum wavepacket Wilh respect LO p i t i a n  for I = 1 
and m = 49.5. 

Figure 3 shows the non-dimensional position expectation value and spread for 
m = 299.5, A4(,,,)l = 17, A4(m)l = 119withanewstartingvalueof(q, /X,p, /~)  = 
(0.8,O) for the compact classical trajectory, with U,, again being the positive value 
determined by (51). The dimension of the representation is 600 and C = 0.4, 0 = 0. 
The compact classical behaviour of the position variable is still periodic but confined 
to positive mlues. 

Figures 1 and 2 show how the spread of the wavepacket decreases as m increases 
and how the expectation values follow more closely the compact classical trajectory. 
Figure 3 shows that the compact classical behaviour for an extreme initial position is 
also recovered (7,9]. 

3.3. The so(3) compacf classical Poisson brackef 
For systems where the compact quantum dynamics depends polynomially on Ql(0 ) ,  
P,(O), J , ( O )  and analytically on 1,  the corresponding compact classical systems will 
exhibit analogous dependencies. For such systems, it can therefore be established 
directly, along similar lines to the non-compact case [l], that 

m-m lim Q(, , , ) I (O@(, , , ) I (C,Q)  = Q ( m ) d W ( m ~ I ( C ~ Q )  
= q ( w ( m ) l ( c , O )  (69) 

with corresponding limits for the P(m)l ( t ) ,  J(m),(t) operators, so that each one- 
dimensional generalized subspace of 7 f ( m ) 1  spanned by @(m)l (<,  @) remains invariant 
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under iiie aciion of these operaiors, aiid is aii eigeiispace of (Q(m) l ( t ) ,  P(,),(t), 
J(m)l( t ) )  corresponding to eigenvalues on a compact classical trajectory. This is 
automatically extended to 

m-m lim 4 Q ( m ) ~ ( i ) 3  P ( , , , ) I ( ~ ) ~  J( , , , )d t ) )@( , , , ) i (C> 0) 

= A(Q(cm)~( t ) ,  p ( m ) ~ ( i ) >  “ ( m ) ~ ( t ) ) @ ( c e ) ~ ( C >  0) 

= A(q(l),P(t),U(l))Q(m)l(C, 0)  (70) 

for any polynomial A ( Q ,  P, J ) ,  including the Hamiltonian operator H (  Q ,  P, J ) .  It 
can also be seen that for each example, 

1 
m-cc lim Q ( , , , ) f ( W ( , , , ) l ( C , O )  = m-CQl€,h Iim 7 [ Q ( m ) f ( t ) ,  ff(,, ,)llQ(,,,)dC,~) 

= Q ( , ) f ( o Q ( w ) l ( C , ~ )  

= 14 ,  ~ ~ ( q , P , U ) ) ~ ~ ( ~ ) Q ( m ) l ( ~ , O )  (71) 

with corresponding limits for P(,,,)l(t), j(,,,),(t), where 

’ a A a B  a A a B >  { A ,  %(3) = 5 4  (apx - gg) + Z P  (xq - Ka. 
1 (72) + U  (%%- -- 

1 a A a B  

a A a s  a A a s  
a p  a4 
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Figure 3. Spread of an allemalive so(3) quanlum wavepackel wilh respen 10 position 
for I = 1 and m = 299.5. 

is the compact classical Poisson bracket for so(3) compact classical systems [8,9]. In 
terms of this Poisson bracket, which has a cyclic symmetry in the three variables, (31) 
a n  be. written in the form 

4 = t% W m ( 3 )  P = t P >  f L ( 3 )  = tu1 f L ( 3 ) .  (73) 

4. The relationship to the non-compact Fesult 

Throughout this analysis, the parameter 1 has been treated as being constant. How- 
ever, in [6], E, = l-]/* was aeated as a contraction parameter. By sending 1 to 
infinity, (E, + o), in (3), the contraction of so(3) to w1 is obtained, and (6) reduces 
to 

Q,E, = ( A / f i ) [ f i t T - i  + 6 E t T + i I  

P , E ~  = ( - iK/ f i ) [ JFt , - l  - ~ E L + I I  

J,L = t7 (74) 

which defines matrix elements for the familiar Hermitian matrix representation of 
W l .  
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Keeping m k e d  where appropriate, it is possible to send 1 to infinity in the vari- 
ous equations given earlier and recover the appropriate equations from the analogous 
discussion of obtaining the classical h i t  of a wl noncompact quantum system by 
means of the contraction of w ,  (and its representations) to t ,  (and its representa- 

Further, by sending 1 to infinity in (31) and (32), ir 3 0, Iu1 + 1, and if 
H(q,p ,u)  does not depend explicitly on U ,  then (31) reduces to the familiar equa- 

tiOnS). 

tic?.. af Har!!i!tonia!! r!!echank3 h! one spatia! .nrhb!e 

. a~ 
aP aq 

p = . a~ 4 ' -  (75) 

Likewise, the ~ ( 3 )  Poisson bracket (72) reduces to the familiar noncompact Poisson 
bracket 

a A a B  a A a B  
{ A ,  E }  = -- - 

a4 a p  a p  a4 

The motion on the compact bounded ellipsoid of revolution (32) flattens out onto 
one of a pair of parallel planes corresponding to lzll = 1. 

Thus there is a dual contraction process: 

€ 1  
so(3) quantum systems + wl quantum systems 

'77% 1 1 Em 

€1 
so(3) classical systems - wl classical systems 

where the contractions may be done in either order. 

5. Concluding remarks 

The classical limit of s o ( n + 2 )  compact quantum systems of the type discussed in [6] 

the lines presented here. 
However the generalization of the so(3) formulation to the so( n + 2) formulation 

is not quite as straightfonvard as the generalization of the wl formulation to the w, 
formulation. This is mostly due to the difficulties involved in writing down explic- 
itly matrix elements of representatives of the generators for general ( 1 ,  I , ,  . . . , l,,), 
n' = [n/Z]l irreducible Hermitian matrix representations of so (n  + 2) with the last 
generator Jntl n+2 being diagonal and with its (degenerate) eigenvalues arranged in 
ascending or descending order when n > 2. The SO( n + 2)  compact quantum system 
has operators [6] 

mi'i pii;j of -@&ion iiiomeiiium En k& Gijji&i& a;oiig 

r , s  = 1 ,  . . . ,  n ( r # s )  Jr s 

Q, = ( K / v [ P l . n + l  
.. - 1 - r =  I , . . . , , '  

I fi\ r 

P, = (-  t c f f i ) J , . , , , ,  r =  1 ,  ..., n 

J = - ( l / l ) J n + i  n+z 

(77) 
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and the desired contraction to t(,,+l)(,,+,z) is achieved by setting J;, = cJ,, ,  
Q; = EQ?,  P: = cP,, J' = E J .  A posskk choice of sequence of representations 
would be those labelled (lm,ll ,12, .  . . , l , , )  for m = 1 , 2 , .  . ., with E,,, = l /m.  
The quadratic Casimir operator of so( n + 2)  again plays an important part, inducing 
a positive definite quadratic constraint involving all the compact classical variables 
and restricting the compact classical motion to a compact hyperellipsoid in the (n  + 
l ) (n  + 2)/2 dimensional classical phase space. 

It is conjectured that similar results to the examples considered here will hold 
for so(3) systems with arbitrary polynomial Hamiltonians H l ( Q l ,  P I ,  J I ) .  Clearly 
general technical conditions need to be investigated under which (69) is satisfied. 
Such conditions, however, would not need to be quite so severe as thme for the non- 
compact case, due to the known existence of analytic solutions Q(,,,)!(t), P(,,,)f(t), 
J(,,, , ( t )  for arbitrary polynomial Hamiltonians. It is hoped that this wll be the topic 

It should be noted in closing that the remarks reported in the noncompact 
case concerning superselection rules are also valid here: the Hilbert space 'H(m)f  is 
decomposable into a direct integral of generalized one-dimensional subspaces, each 
of which remains invariant under the dynamics. Each of these subspaces is associated 
with a single compact classical trajectory and the superposition of vectors from two 
%more of these subspaces is unphysical. 

for ill rther studies. 
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